Flash into the Past – Tamil Talents: Chakravarthi Padmanabhan Ramanujam

When it comes to talented Tamils, there is no shortage. Looking back through history, we see that some Tamils were highly successful and have achieved highly in their respective fields. Todays youth, are these future sucess stories. Over the next few days, we will be looking at some examples of successful Tamils. Stay tuned!

Chakravarthi Padmanabhan Ramanujam (Tamil: சக்கிரவர்த்தி பத்மநாபன் ராமானுஜம், January 9, 1938 – October 27, 1974) was an Indian mathematician who worked in the fields of number theory and algebraic geometry. He got elected Fellow of the Indian Academy of Sciences in 1973.  Ramanujam set out for Mumbai at the age of eighteen to pursue his interest in mathematics. He and his friend and schoolmate Raghavan Narasimhan, and S. Ramanan joined TIFR together in 1957. At the Tata Institute there was a stream of first rate visiting mathematicians from all over the world. It was a tradition for some graduate student to write up the notes of each course of lectures. Accordingly, Ramanujam wrote up in his first year, the notes of Max Deuring’s lectures on Algebraic functions of one variable. It was a nontrivial effort and the notes were written clearly and were well received. The analytical mind was much in evidence in this effort as he could simplify and extend the notes within a short time period. “He could reduce difficult solutions to be simple and elegant due to his deep knowledge of the subject matter” states Ramanan. “Max Deuring’s lectures gave him a taste for Algebraic Number Theory. He studied not only algebraic geometry and analytical number theory of which he displayed a deep knowledge but he became an expert in several other allied subjects as well”.

His Ph.D guide, K. G. Ramanathan[1] states that Ramanujam displayed within two years of his stay, versatility and depth in mathematics which was rare and somewhat frightening. However, there were no concrete results commensurate with his mathematical breadth and depth and this soon led to frustration. His wide foray into a variety of topics led to a dispersed knowledge but it did not have ‘big cash value’ states Ramanathan. Ramanujam was frustrated and felt that he was not worthy of staying on in the Institute. “He applied to different universities to teach mathematics and fortunately for him he was not accepted anywhere” states Ramanathan. On his guide’s suggestion he began working on a problem relating to the work of the great German number theorist C. L. Siegel. His insight and knowledge finally bore fruit and he solved the long outstanding problem in a remarkably short time. In the course of proving the main result[2] to the effect that every cubic form in 54 variables over any algebraic number field K had a non-trivial zero over that field, he had also simplified the earlier method of Siegel. Although he felt that with a little more effort, it could be reduced even to Davenport’s 29, valid for the rational number field, Ramanujam was not interested in pursuing it. He wanted to move on and tackle more exciting problems. He took up Waring’s problem in algebraic number fields and got interesting results. In recognition of his work and his contribution to Number Theory, the Institute promoted him as Associate Professor. He protested against this promotion as ‘undeserved’, and had to be persuaded to accept the position.He proceeded to write his thesis in 1966 and took his Doctoral examination in 1967. Dr. Siegel who was one of the examiners was highly impressed with the young man’s depth of knowledge and his great mathematical abilities.

Ramanujam was a scribe for Shafarevich’s course of lectures in 1965 on minimal models and birational transformation of two dimensional schemes. Professor Shafarevich[3] subsequently wrote to say that Ramanujam not only corrected his mistakes but complemented the proofs of many results. The same was the case with Mumford’s lectures on abelian varieties which was delivered at TIFR around 1967. Mumford wrote in the preface to his book that the notes improved upon his work and that his current work on abelian varieties was a joint effort between him and Ramanujam. A little known fact is that during this time he started teaching himself German, Italian, Russian and French so that he could study mathematical works in their original form. His personal library contained quite a few non-English mathematical works.

“C. P. Ramanujam.” Wikipedia, the Free Encyclopedia. Web. 12 Sept. 2011. <http://en.wikipedia.org/wiki/C._P._Ramanujam>.

Leave a Reply

*